skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "O’Shea, Brian W"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract We present initial results from extremely well-resolved 3D magnetohydrodynamical simulations of idealized galaxy clusters, conducted using the AthenaPK code on the Frontier exascale supercomputer. These simulations explore the self-regulation of galaxy groups and cool-core clusters by cold gas-triggered active galactic nucleus (AGN) feedback incorporating magnetized kinetic jets. Our simulation campaign includes simulations of galaxy groups and clusters with a range of masses and intragroup and intracluster medium properties. In this paper, we present results that focus on a Perseus-like cluster. We find that the simulated clusters are self-regulating, with the cluster cores staying at a roughly constant thermodynamic state and AGN jet power staying at physically reasonable values (≃1044–1045erg s–1) for billions of years without a discernible duty cycle. These simulations also produce significant amounts of cold gas, with calculations having strong magnetic fields generally both promoting cold gas formation and allowing cold gas out to much larger cluster-centric radii (≃100 kpc) than simulations with weak or no fields (≃10 kpc), and also having more filamentary cold gas morphology. We find that AGN feedback significantly increases the strength of magnetic fields at the center of the cluster. We also find that the magnetized turbulence generated by the AGN results in turbulence where the velocity power spectra are tied to AGN activity, whereas the magnetic energy spectra are much less impacted after reaching a stationary state. 
    more » « less
    Free, publicly-accessible full text available July 21, 2026
  2. ABSTRACT Precipitation of cold gas due to thermal instability in both galaxy clusters and the circumgalactic medium may regulate active galactic nucleus feedback. We investigate thermal instability in idealized simulations of the circumgalactic medium with a parameter study of over 600 three-dimensional hydrodynamic simulations of stratified turbulence with cooling, each evolved for 10 Gyr. The entropy profiles are maintained in a steady state via an idealized ‘thermostat’ process, consistent with galaxy cluster entropy profiles. In the presence of external turbulent driving, we find cold gas precipitates, with a strong dependence whether the turbulent driving mechanism is solenoidal, compressive, or purely vertical. In the purely vertical turbulent driving regime, we find that significant cold gas may form when the cooling time to free-fall time $$t_{\rm cool} / t_{\text{ff}} \lesssim 5$$. Our simulations with a ratio of $$t_{\rm cool} / t_{\text{ff}} \sim 10$$ do not precipitate under any circumstances, perhaps because the thermostat mechanism we use maintains a significant non-zero entropy gradient. 
    more » « less
    Free, publicly-accessible full text available January 23, 2026
  3. ABSTRACT We present a study of the co-evolution of a population of primordial star-forming minihaloes at Cosmic Dawn. In this study, we highlight the influence of individual Population III stars on the ability of nearby minihaloes to form sufficient molecular hydrogen to undergo star formation. In the absence of radiation, we find the minimum halo mass required to bring about collapse to be ∼105 M⊙, this increases to ∼106 M⊙ after two stars have formed. We find an inverse relationship between halo mass and the time required for it to recover its molecular gas after being disrupted by radiation from a nearby star. We also take advantage of the extremely high resolution to investigate the effects of major and minor mergers on the gas content of star-forming minihaloes. Contrary to previous claims of fallback of supernova ejecta, we find minihaloes evacuated after hosting Pop III stars primarily recover gas through mergers with undisturbed haloes. We identify an intriguing type of major merger between recently evacuated haloes and gas-rich ones, finding that these ‘mixed’ mergers accelerate star formation instead of suppressing it like their low-redshift counterparts. We attribute this to the gas-poor nature of one of the merging haloes resulting in no significant rise in temperature or turbulence and instead inducing a rapid increase in central density and hydrostatic pressure. This constitutes a novel formation pathway for Pop III stars and establishes major mergers as potentially the primary source of gas, thus redefining the role of major mergers at this epoch. 
    more » « less
  4. Abstract Magnetized turbulence is ubiquitous in many astrophysical and terrestrial plasmas but no universal theory exists. Even the detailed energy dynamics in magnetohydrodynamic (MHD) turbulence are still not well understood. We present a suite of subsonic, super-Alfvénic, high plasma beta MHD turbulence simulations that only vary in their dynamical range, i.e., in their separation between the large-scale forcing and dissipation scales, and their dissipation mechanism (implicit large eddy simulation, ILES, and direct numerical simulation (DNS)). Using an energy transfer analysis framework we calculate the effective numerical viscosities and resistivities, and demonstrate that all ILES calculations of MHD turbulence are resolved and correspond to an equivalent visco-resistive MHD turbulence calculation. Increasing the number of grid points used in an ILES corresponds to lowering the dissipation coefficients, i.e., larger (kinetic and magnetic) Reynolds numbers for a constant forcing scale. Independently, we use this same framework to demonstrate that—contrary to hydrodynamic turbulence—the cross-scale energy fluxes are not constant in MHD turbulence. This applies both to different mediators (such as cascade processes or magnetic tension) for a given dynamical range as well as to a dependence on the dynamical range itself, which determines the physical properties of the flow. We do not observe any indication of convergence even at the highest resolution (largest Reynolds numbers) simulation at 20483cells, calling into question whether an asymptotic regime in MHD turbulence exists, and, if so, what it looks like. 
    more » « less
  5. Abstract The Milky Way has accreted many ultra-faint dwarf galaxies (UFDs), and stars from these galaxies can be found throughout our Galaxy today. Studying these stars provides insight into galaxy formation and early chemical enrichment, but identifying them is difficult. Clustering stellar dynamics in 4D phase space (E,Lz,Jr,Jz) is one method of identifying accreted structure that is currently being utilized in the search for accreted UFDs. We produce 32 simulated stellar halos using particle tagging with the Caterpillar simulation suite and thoroughly test the abilities of different clustering algorithms to recover tidally disrupted UFD remnants. We perform over 10,000 clustering runs, testing seven clustering algorithms, roughly twenty hyperparameter choices per algorithm, and six different types of data sets each with up to 32 simulated samples. Of the seven algorithms, HDBSCAN most consistently balances UFD recovery rates and cluster realness rates. We find that, even in highly idealized cases, the vast majority of clusters found by clustering algorithms do not correspond to real accreted UFD remnants and we can generally only recover 6% of UFDs remnants at best. These results focus exclusively on groups of stars from UFDs, which have weak dynamic signatures compared to the background of other stars. The recoverable UFD remnants are those that accreted recently,zaccretion≲ 0.5. Based on these results, we make recommendations to help guide the search for dynamically linked clusters of UFD stars in observational data. We find that real clusters generally have higher median energy andJr, providing a way to help identify real versus fake clusters. We also recommend incorporating chemical tagging as a way to improve clustering results. 
    more » « less
  6. null (Ed.)
  7. Abstract The circumgalactic medium (CGM) is often assumed to exist in or near hydrostatic equilibrium, with the regulation of accretion and the effects of feedback treated as perturbations to a stable balance between gravity and thermal pressure. We investigate global hydrostatic equilibrium in the CGM using four highly resolvedL*galaxies from the Figuring Out Gas & Galaxies in Enzo (FOGGIE) project. The FOGGIE simulations were specifically targeted at fine spatial and mass resolution in the CGM (Δx≲ 1 kpch−1andM≃ 200M). We develop a new analysis framework that calculates the forces provided by thermal pressure gradients, turbulent pressure gradients, ram pressure gradients of large-scale radial bulk flows, centrifugal rotation, and gravity acting on the gas in the CGM. Thermal and turbulent pressure gradients vary strongly on scales of ≲5 kpc throughout the CGM. Thermal pressure gradients provide the main supporting force only beyond ∼0.25R200, or ∼50 kpc atz= 0. Within ∼0.25R200, turbulent pressure gradients and rotational support provide stronger forces than thermal pressure. More generally, we find that global equilibrium models are neither appropriate nor predictive for the small scales probed by absorption line observations of the CGM. Local conditions generally cannot be derived by assuming a global equilibrium, but an emergent global equilibrium balancing radially inward and outward forces is obtained when averaging over the nonequilibrium local conditions on large scales in space and time. Approximate hydrostatic equilibrium holds only at large distances from galaxies, even when averaging out small-scale variations. 
    more » « less
  8. Abstract The classical definition of the virial temperature of a galaxy halo excludes a fundamental contribution to the energy partition of the halo: the kinetic energy of nonthermal gas motions. Using simulations of low-redshift, ∼ L * galaxies from the Figuring Out Gas & Galaxies In Enzo (FOGGIE) project that are optimized to resolve low-density gas, we show that the kinetic energy of nonthermal motions is roughly equal to the energy of thermal motions. The simulated FOGGIE halos have ∼2× lower bulk temperatures than expected from a classical virial equilibrium, owing to significant nonthermal kinetic energy that is formally excluded from the definition of T vir . We explicitly derive a modified virial temperature including nonthermal gas motions that provides a more accurate description of gas temperatures for simulated halos in virial equilibrium. Strong bursts of stellar feedback drive the simulated FOGGIE halos out of virial equilibrium, but the halo gas cannot be accurately described by the standard virial temperature even when in virial equilibrium. Compared to the standard virial temperature, the cooler modified virial temperature implies other effects on halo gas: (i) the thermal gas pressure is lower, (ii) radiative cooling is more efficient, (iii) O vi absorbing gas that traces the virial temperature may be prevalent in halos of a higher mass than expected, (iv) gas mass estimates from X-ray surface brightness profiles may be incorrect, and (v) turbulent motions make an important contribution to the energy balance of a galaxy halo. 
    more » « less